Vectorization and operator overloading in C#
Csaba Török, 2002
Introduction

In the nineties many researchers, that needed computations in their work, turned from Fortran or Pascal to such systems as SPlus, Matlab. The main benefits of these and similar systems is the support of

· vectorization – vectorial programming

· 2D and 3D visualization

· numerical computation
with a rich set of functions and toolboxes. However coding in these systems has an important drawback. Suppose, you want the code written in any of theses languages to run in Excel, HTML or give it to one of your colleges. Running code on another PC needs the same native system to be installed and converting the code for a broad reuse in other systems or languages is either impossible or requires special, nontrivial solutions.

The new Microsoft programming language C# officially introduced in February this year (the beta versions of the language were tested from 2000) provides techniques and services enabling code transformation and reuse in other languages and systems (for example both in Office and HTML). C# and the .NET Framework as its base platform support the work with arrays and graphics, however not on the level of the above mentioned systems.

Everyone who got used to Matlab’s and SPlus’s services and intends or is forced to write code in classic or new languages desires to use similar supports, services. This paper shows the basic techniques of the process of vectorization in C # and introduces the LinAlg class component version 1.02 that has been developing on the authors department. LinAlg enables vectorial programming and incorporates numerical, graphical and database methods.

The next section shows the basic work with one and two dimensional arrays. The third section is devoted to the construction of the class Vector and introduces several constructors for instantiating objects of the new class. The forth section describes how to access to the vector elements via a special technique called indexer. Then we show shortly how the operator overloading works. Creating user defined operators via operator overloading enables you to write vector arithmetic expressions. The fifth section deals with the vector counterparts of mathematical functions. The next section describes briefly the C# class library LinAlg and gives some examples.

Arrays

In this section we show how to declare an array of float type and how to instantiate arrays as .NET Framework System.Array class. This can be done in either one or two steps. To create a single-dimensional array x of float values declare it

float[] x;

and initialize its three elements (to zero)

x = new float[3];

The same can be written with one code line

float[] x = new float[3];

A very useful way to declare an array with concrete values is

float[] y = {1f, 2.1F, (float)3, 4};

You can choose any from the four casting, however the last one is not recommended. The first three are explicit casting from double to float an the last one is is an implicit casting from integer to float.
Two dimensional arrays are declared and initialized similarly

float[,] a = new float[2, 3];

float[,] y = {{1f, 2f, 3f}, {11f, 12f, 13f}};

Class Array serves as the base class for all arrays in the common language runtime and provides methods for creating, manipulating, searching and sorting arrays. The length of an Array is the total number of elements it can contain in all rows (and columns). The rank of an Array is the number of dimensions in the Array. The length and rank of an array can be determined by the properties Length and Rank. The function GetLength gets the number of elements in the specified dimension of the Array.

MessageBox.Show(x.Length.ToString()); // => 3

MessageBox.Show(a.Rank); // => 2

MessageBox.Show(A.GetLength(0).ToString() + "x" + A.GetLength(1).ToString()); // => 2x3

You can use an index to gain access to the elements of arrays:

MessageBox.Show(x[0].ToString()); // => 1

MessageBox.Show(A[1, 0].ToString()); // => 11

Consider the equality of two vectors

float[] x1 = {11f, 12.4f};

float[] x2 = {11f, 12.4f};

MessageBox.Show((x == y).ToString()); // => false

MessageBox.Show((x.Equals(y)).ToString());// => false

As you can see the system returns false instead of true. It is so, for Equals must be overridden. You may ask where? In a new user class, inherited from Array.

Class Vector and its Constructors

We introduce a user defined class Vector with one private member and add several constructors to the class in this section. The functionality of the class will be enhanced in the successive sections.
public class Vector

{

private float[] vec; // the private member

public Vector(){}

public Vector(int n) // n zeros

{

vec = new float[n];

}

public Vector(int n, float from)

{

float s = from - 1;

vec = new float[n];

for(int i = 0; i < n; i++)

{

s += 1;

vec[i] = s;

}

}
}

There are three instance constructors in the above code that implement the actions required to initialize instances of the class. All value types implicitly declare a public parameterless instance constructor called the default constructor, however if you are considering using your class in Com environment, it is a good practice to declare it explicitly. The constructors are distinguished on the base of their signatures. The constructor signature consists of the type and kind (value, reference, or output) of each of its formal parameters. The second constructor with one parameter creates a vector array (vector) with n elements as an instance of class Vector and initializes the elements to zero – 0. The constructor with two parameters creates a sequence an n elements beginning with the value “from” and every consequent element is increased by one.

Let us see how you can create instances of the class Vector. Before using the class from another project do not forget to reference it.
Vector x;

x = new Vector(3);

Vector x has three elements and each equals 0. Note the difference in syntax for instantiating a Vector and Array. Use brackets () to instantiate a Vector and [] to instantiate an Array.

Vector declaration and instantiating can be done within one codeline:

Vector xx = new Vector(3);

To instantiate on the base of constructor with two parameters write

Vector x2 = new Vector(3, -1f);

The elements of vector x2 equal –1, 0, 1.

The number of constructors can be increased and is constrained only with the number of parameters and their types. To insure the communication with default C# one dimensional arrays and enable casting a float single-array to Vector you can declare an implicit user-defined type conversion operator that will be invoked without a cast.

public static implicit operator Vector(float[] xa)

{

// int n = xa.GetLength(0);

int n = xa.Length;

Vector xv = new Vector(n);

for(int i = 0; i < n; i++)

{

xv[i] = xa[i];

}

return xv;

}

Instantiating on the base of this type conversion operator (via an implicit cast) write

Vector x3 = new float[] {0, 1, 0};

Access to Vector Elements

It would be great, if the Vector class could inherit the properties and methods from the class System.Array by declaration:

public class Vector : Array

and e.g. write:

x.GetValue(1);

Unfortunately it does not go. The abstract SysTem.Array class cannot be inherited. This section shows how to declare indexers in the C# class Vector to provide array-like access to the elements of its instances.

First let us see how to print the whole vector. Create a method Print in a Vector class

public void Print()

{

string s = "Vector of length " + vec.Length;

for(int i = 0; i < vec.Length; i++)
s += "\r\n" + vec[i].ToString();

MessageBox.Show(s);

}

and call it this way

Vector x = new Vector(3, -1f);

x.Print();

Now we will implement an idexer to enable access to the elements of vector x. An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are similar to properties except for some differences, e.g. an indexer must have at least one parameter.

public float this[int n]

{

get

{

return vec[n];

}

set

{

vec[n] = value;

}

}

"this" stands for the element introduced by the indexer. You can access the Vector elements through indexes

MessageBox.Show(x[0].ToString());

Every class in C# is derived from the base class Object and so inherits its methods. Derived classes should override some of these methods. The method ToString returns a string that represents the current Object. To actualize this method for our class Vector include the following method(s) to the class.
public override string ToString()

{

string s = "Vector of length " + vec.Length;

for(int i = 0; i < vec.Length; i++)
s += "\r\n" + vec[i].ToString();

return s;

}

public void Print(string title)

{

MessageBox.Show(ToString(), title);

}

As you can see, due to the overridden version of method ToString the implementation of the overloaded method Print can be made simpler. To test the overridden ToString method and the overloaded Print write

MessageBox.Show(x.ToString());

x.Print("Vector x");

Vector operators

This is our main section. It shows how you can define user defined operators via operator overloading. To overload the addition operator you define a function called operator+. We show how to define and implement Vector addition operator + where both of the operands are of type Vector. The compiler distinguishes between the different meanings of an operator by examining the types of its operands.

One of the reasons I dropped Visual Basic and turned to C++ and afterward to C# is the fact that VB does not support operator overloading, a language feature, that enables to write object (vector, matrix) expressions like

C = 2*A*x – 3*sin(B*y)

where the variables represents vectors and matrices.

The three object-oriented features – inheritance, isomorphism and method overloading – are implemented to both C# and the new .NET version 7 of VB. However the latter, unlike C# and VC++, will further miss operator overloading. To be honest, vector and matrix expressions can be written in VB for Application Excel. However this non-documented feature of VBA Excel, that is a consequence of the special data structure and data handling requirements of Excel, is not known and spread out widely.

All unary and binary operators have predefined implementations that are automatically available in any expression. User-defined operator implementations always take precedence over predefined operator implementations and their declarations always require at least one of the parameters to be of the class or struct type that contains the operator declaration.

The unary operators that can be overloaded are

+, -, !, ~, ++, --, true, false

The binary operators that can be overloaded are

+, -, *, /, %, &, |, ^, <<, >>

The binary comparison operators

==, !=, <, >, <=, >=

must be overloaded in pairs:

== together with !=, < together with > (not >=)

You can not overload the other operators. So the assignment operators = and += cannot be overloaded.

public int Length

{

get

{

return vec.Length;

}

}

public static Vector operator +(Vector x, Vector y)

{

int m = x.Length;

int n = y.Length;

if(m != n)

{

throw new Exception("\n\rCsaba: Error in Vector addition –

different vector length: " + n.ToString() + " != " + m.ToString());

}

Vector z = new Vector(m);

for(int i = 0; i < m; i++)

z[i] = x[i] + y[i];

return z;

}

To test the operator + write the code

static private void vectorAdd()

{

Vector z;

Vector x = new Vector(6, 1f);

Vector y = new Vector(5, 10f);

try

{

z = x + y;

z.Print("Sum of two vectors");

}

catch (Exception e)

{

MessageBox.Show(e.ToString());

}

finally

{

//Contains the exception handler and the cleanup code.

}

}

The overloading of addition operator was simple. The overloading of Equals operator needs a little much work.

public static bool operator ==(Vector x, Vector y)

{

int m = x.Length;

int n = y.Length;

if(m != n)

{

throw new Exception("\n\rCsaba: Error in Vector addition - different vector length: " + n.ToString() + " != " + m.ToString());

}

for(int i = 0; i < m; i++)

{

if(x[i] == y[i]){}

else return false;

}

return true;

}

Operator LinAlg.Vector.operator == requires a matching operator != to also be defined.

public static bool operator !=(Vector x, Vector y)

{

int m = x.Length;

int n = y.Length;

if(m != n)

{

throw new Exception("\n\rCsaba: Error in Vector addition - different vector length: " + n.ToString() + " != " + m.ToString());

}

for(int i = 0; i < m; i++)

{

if(x[i] != y[i]) return true;

}

return false;

}

In addition to the implementation of the user defined operators == and != LinAlg.Vector must override Object.Equals(object o) and Object.GetHashCode() too
public override bool Equals(object o2)

{

Vector v2 = (Vector) o2;

return (this == v2);

}

public override int GetHashCode()

{

int m = this.Length - 1;

int hc = GetHashCode00(m);

return hc;

}

private int GetHashCode00(int m)

{

int hc = (m == 0) ? (vec[0].GetHashCode()) :

(GetHashCode00(m-1) ^ vec[m].GetHashCode());

return hc;

}

We could not see such implementation of the hash table earlier. However it respects the MS recommendations and uses the binary ^ operator that computes the bitwise exclusive-OR of its integral types operands.

After executing the following test method you will see that it determines the equality of two vectors correctly – can you remember the problem with Equals from section Arrays?
static private void vectorEqual()

{

Vector x = new Vector(5, 1f);

Vector y = new Vector(5, 1f);

try

{

MessageBox.Show((x.Equals(y)).ToString());

MessageBox.Show((x == y).ToString()); // false

MessageBox.Show((x != y).ToString()); // true

MessageBox.Show(x.GetHashCode().ToString() + "\n\r" +

y.GetHashCode().ToString());

}

catch (Exception e)

{

MessageBox.Show(e.ToString());

}

}

Mathematical operations with Vectors

You can need a number of functions when you are building scalar expressions. The .NET Framework provides a wide range of mathematical functions that you can use when performing calculations. For building vector expressions you may need except for operators also mathematical functions. This section describes how to achieve calculation of functions on vectors without looping.

The System namespaces class Math provides constants and static methods for trigonometric, logarithmic, and other common mathematical functions:

double a = Math.Sin(Math.PI/2);

MessageBox.Show(a.ToString());

You may write code

Vector x = new Vector(5, 0f);

Vector y = x + MathLA.Sin(x);

y.Print();

after creating a new public class MathLA

public class MathLA

{

public MathLA()

{

}

public static Vector Sin(Vector x)

{

int m = x.Length;

Vector y = new Vector(m);

for(int i = 0; i < m; i++)

y[i] = (float)Math.Sin(x[i]);

return y;

}

}

Clanok 1

======

[1] B.Stroustrup: The C++ Programming Language, Addison-Wesley, 1997

[2] J.Richter: Applied Microsoft .NET Framework Programming, MS Press, 2002, Chapter 6

http://www.microsoft.com/mspress/books/sampchap/5353.asp#SampleChapter

http://samples.gotdotnet.com/quickstart/howto/doc/compare.aspx

How Do I...Compare the value of two objects?

How Do I...Compare object references?
PAGE
1

